
ARCHITECTING
HIGH AVAILABILITY LINUX ENVIRONMENTS
WITHIN THE RACKSPACE CLOUD
A detailed exploration into the technical requirements and business implications of
Cloud High Availability

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 1
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

By: The Rackspace Cloud Engineering Team

I. SUMMARY

Over the past eighteen months, cloud computing has made significant strides in

transforming itself from a niche technology to a key element and quite often an

extension of enterprise production environments. As Infrastructure as a Service

(IaaS) is much more than virtualization, corporations have begun moving past a test/

development scenarios role and have started replacing traditional dedicated resources,

forcing IT decision-makers into a whole new set of considerations.

This technical whitepaper assists IT managers and their teams with the concepts

needed for planning, designing, and deploying best-practice High Availability IaaS

environments with Rackspace Linux Cloud Servers. While most of the information

presented here is Rackspace specific, much of the theory and discussion can apply for

all virtualized IaaS solutions.

II. WHAT IS HIGH AVAILABILITY (HA)?

While Wikipedia defines High Availability as “A system design approach and

associated service implementation that ensures a prearranged level of operational

performance will be met during a contractual measurement period,” we will focus

this paper on cloud configurations that remove as many single points of failure

as possible and that are inherently designed with a specific focus on operational

continuity, redundancy, and fail-over capability.

High Availability can be achieved at many different levels including the application

level, infrastructure level, datacenter level, and geographic redundancy level. We will

focus on the infrastructure level in this white paper.

In its most basic form, infrastructure-level HA configurations consist of:

• Two or more Load Balancers

• Two or more Web Servers

• Two or more Database Servers

In this example, active/passive load balancers, multiple web nodes, and replicated DB

servers all provide for redundancy at each layer of the configuration.

Of course, advanced HA configurations, including those designed for geographic

redundancy across multiple data centers, can become quite a bit more complex than

the basic HA example pictured.

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 2
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

ARCHITECTING HIGH AVAILABILITY
CLOUD ENVIRONMENTS

EXAMPLE: SIMPLE HA CONFIG

LB1
FAILOVER LBS

WEB1

LB2

WEB2

DB1 DB2

INTERNET

http://en.wikipedia.org/wiki/High_availability

III. DOES YOUR BUSINESS NEED HA?

As our digital dependence increases in our daily lives, downtime in the applications we use most creates a

significant amount of angst for users. When Facebook, Gmail, or AT&T experience outages, these events

receive national and often international attention.

Not only can downtime in your products turn into a disastrous PR nightmare, but more importantly, it can

also seriously tarnish the loyalty of your customer base that depends on you for their financial livelihood. IDC,

a leading IT market research firm, estimates that in 2007, “server downtime cost organizations approximately

$140 billion in lost revenue and reduced worker productivity.”1

Regardless of the size of your organization, if downtime in your internal infrastructure or core product

offerings negatively impacts your bottom line, you are a perfect candidate for exploring cloud HA.

High Availability can still be a tricky and expensive proposition in dedicated environments. Fortunately, cloud

computing brings HA within the reach of most small- and medium-sized businesses.

IV. RACKSPACE CLOUD HA VS. DEDICATED HA

Three significant advantages make cloud HA a better choice than Dedicated HA. Let’s break each of them

down.

1.) Scaling

If your dedicated environment experiences a sudden burst in traffic, do you have the overhead necessary

to stay online? What is your scaling strategy? Do you have a method to predict what the anticipated traffic

might be during these spikes? Even with a best practices HA config in place on dedicated gear, scaling can be

a time-consuming, difficult and costly proposition. Luckily, the cloud mediates a fair amount of these issues.

Cloud Servers offer two types of scaling:

	 a.) Scaling Up (out of the box – for the novice)
			 Cloud Servers can easily be resized up with a few clicks in a control panel and 5 to 10 	minutes 		

		 of time. Cloud Servers can be provisioned starting at 256MB of RAM (Linux) scaling all the way to 	

			 15GB of RAM. These sizing adjustments require brief human intervention using the cloud control 	

			 panel or can be programmatically executed via the Cloud Servers API.

	 b.) Near-Real-Time Scaling (with the API/3rd party apps – for the expert)
			 With a cloud HA config, you can leverage dynamic scaling tools such as enStratus to provide near-	

			 real-time auto-scaling. enStratus can be set to monitor specific thresholds in your environment 		

			 including load averages, disk space utilization, etc. It can take a prebuilt web server template image,

			 automatically provision it, and re-configure your load balancer to start serving from the additional 	

			 web node on the fly. Savvy developers can also use the Rackspace Cloud Servers API, to develop 	

			 their own automated scaling solution.

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 3
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

“IDC estimates that in 2007,

server downtime cost

organizations approximately

$140 billion in lost revenue

and reduced worker

productivity.”1

http://www.rackspacecloud.com/cloud_hosting_products/servers/api
http://www.rackspace.com/cloud/tools/applications/php-cloud-servers/

2.) Management & Tools
Cloud Server management, especially when many nodes are in an environment, is far easier than managing

a dedicated environment with multiple servers. Whether using the portal or the API, Cloud Servers can very

easily be copied, re-imaged, launched in rescue mode for repair, accessed via a virtual console, and more.

Furthermore, an interface like Cloudkick takes management a step further and allows for easy Cloud Server

resource administration across many providers. This brings all of your virtualized instances, whether from

Rackspace or an alternate provider, into a central management console.

V. CAPACITY PLANNING

Even with the inherent flexibility of Cloud Server scaling, there isn’t a finite formula for capacity planning for

any specific cloud HA configuration, as project requirements are always unique. As with all such calculation

endeavors, especially yet-to-be launched projects, a significant amount of estimation based on prior

experience is involved in sizing the environment properly. Luckily, with the ease of cloud scaling, estimate

miscalculations can easily be rectified. This can prevent customers from over-paying for unutilized resources

or the long build times of provisioning dedicated equipment.

A common sense practice, especially with the efficient cloud hourly billing model, suggests building 30-

40% past maximum estimated requirements when starting out. It’s always easier to scale down unnecessary

resources later than to start with insufficient capacity on day one.

To get started sizing your configuration, begin with compiling any information you have available on existing

or expected bandwidth utilization, concurrent process and visitor counts, application weight, etc. Some

sample data types are presented below.

1. Peak Throughput Analysis: Finding the bandwidth required during peak times is crucial to your

calculations. There are three ways to achieve this, in order of accuracy:

	 a.) 	 Most accurate:
			 If you have access to existing MRTG graphs or similar throughput graphing metrics, take note of 	

		 your maximum throughput in mbits/sec across your firewall (FW) (or all of your web nodes 		

			 combined) at peak usage times.

	

	 b.) 	 Somewhat accurate:
			 If the above isn’t available, take the highest usage bandwidth (BW) day over the last few months 	

			 in megabytes (MB) or gigabytes (GB) and calculate it in mbit/sec. We will take this amount and 		

			 divide by 8 hours in a day to weigh it towards peak usage. It’s important to keep in mind this is a 	

			 guideline and not a finite calculation.

			 Example: 5 GB/day: 5GB * 1024 = 5120MB/day / 8 hours = 640 MB/hr / 60 minutes = 10.66 MB/	

			 min / 60 seconds = .18 MB/sec * 8 = 1.42 mbit/seconds

	

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 4
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

http://cloudkick.com
http://oss.oetiker.ch/mrtg/

c.) 	 Least accurate:
			 If you only have monthly traffic stats available to you, a general idea can still be reached.

			 Example: 2TB/mo:

			 2TB * 1024 = 2048 GB * 1024 = 2,097,152 MB/mo

			 2,097,152 MB/mo / 31 days = 67,650 MB/day/24 hours = 2818 MB/hr/60 minutes = 47MB/min/ 60 	

			 seconds = .78MB/ seconds .78MB/sec * 8 = 6.24 mbit /sec

2. Concurrent Connection Capacity Analysis: Two items should be collected:

	 • 	 Number of maximum desired concurrent users: This is usually a simple estimate, gleaned from 		

		 	developers or system architects on your team.

		 • 	Weight of average user visit: On average, how many pages or resources does a

			 user access with each visit? What is the weight of these resources in MB?

	 		 Example: 500 concurrent connections @ .75 MB /visit.

			 50 * .75 = 37.5 MB/sec = 300 mbit / sec of throughput needed

3. Application Analysis: Analyzing your application weight is important for estimating how much RAM

you may need on your web servers. There are three key metrics which should be noted:

		 Page Weight = Request weight * requests per page / Sec = Total RAM of all Web Nodes / Request 	

		 WeightVisits / Sec = Total Web RAM / Page Weight

It’s important to stress again that the above analysis only results in a very loose estimate for picking a general

starting point for your configuration. With this information, you can determine cost per page and, via web

page metrics, discover which pages are costing you the most.

In the next section, we will take these inputs and build a best-estimate architecture. Once the architecture

is constructed, and the application is deployed in test mode, we will run a set of rigorous performance

benchmarking utilities to validate our calculations and see how accurate our estimates turned out.

VI. ARCHITECTING THE SOLUTION

Once capacity planning is completed, we need to start designing our cloud HA configuration at the load

balancing layer and work through the web and database layers. For load balancing, we will use two Cloud

Servers, each of which will act as a load balancer, utilizing open-source utilities such as HAProxy, nginx, etc.

These servers will be designed to poll each other for instant fail-over utilizing Heartbeat, and shared IPs. If a

node or host hypervisor fails, the second load balancer will take over in real time.

You can read more about this setup by referencing the following docs in the Rackspace Cloud Server Wiki:

	 IP_Failover_-_High_Availability_Explained
	 IP_Failover_-_Setup_and_Installing_Heartbeat

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 5
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

http://cloudservers.rackspacecloud.com/index.php/IP_Failover_-_Setup_and_Installing_Heartbeat
http://cloudservers.rackspacecloud.com/index.php/IP_Failover_-_High_Availability_Explained#Failover_IPs
http://cloudservers.rackspacecloud.com/index.php/Main_Page
http://cloudservers.rackspacecloud.com/index.php/IP_Failover_-_High_Availability_Explained
http://cloudservers.rackspacecloud.com/index.php/IP_Failover_-_Setup_and_Installing_Heartbeat

Load Balancing Layer Design

 1.) Decide if SSL termination is needed at the LB layer. If yes, use nginx. If no, or if SSL pass-through is

 sufficient, use HAProxy.

 2.) Request an additional IP as a “floating IP” from support via the customer support ticketing system.

 This will function as the VIP (virtual IP/movable IP), which you will point DNS to for your sites.

 3.) Select Cloud Servers based on the outbound mbit/sec requirements calculated above at peak times

for the public interface. Reference this chart for the proper sizing:

 4.) If your LB throughput needs are higher than 70mbit/sec, you will need to consider multiple load

 balancer pairs. To achieve this, a round-robin DNS solution, such as UltraDNS would need to

 be used.

Cloud Server Size Network Throughput (public/private)

256MB RAM / 10GB HD 10 Mbps / 20 Mbps

512MB RAM / 20GB HD 20 Mbps / 40 Mbps

1024MB RAM / 40GB HD 30 Mbps / 60 Mbps

2048MB RAM / 80GB HD 40 Mbps / 80 Mbps

4096MB RAM /

120GB HD 50 Mbps / 100 Mbps

8192MB RAM / 320GB HD 60 Mbps / 120 Mbps

15872MB RAM / 620GB HD 70 Mbps / 140 Mbps

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 6
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

4 x LB
(16GB RAM)

DB1 - Master
(16GB RAM)

4 x Web
(8GB RAM)

HAProxy
Heartbeat
Shared IPs

Proxy1 (Active)
(8 GB RAM)

Round Robin DNS
(ie. UltraDNS)

DB2 - Master (16GB RAM)

DB3 - Slave
(16GB RAM)

DB4 - Slave (16GB RAM)

Mail Relay
(2GB RAM)

Proxy 2 (Passive)
(8 GB RAM)

INTERNET

EXAMPLE: ROUND ROBIN DNS HA CONFIG

http://www.ultradns.com/

Web Layer Design

Designing the Cloud Server web layer is very straightforward as Cloud Servers mimic dedicated gear from

many administration perspectives. Whether you are utilizing Apache, Tomcat, lighttpd, or some other web

server, designing this layer will be familiar territory for an intermediate-to-advanced administrator. Remember

to keep in mind that a scripting scheme will need to be developed to replicate your content to each web

node when the codebase is updated. Either Git or rsync via a recurring cron job are both good options here.

Data Base Layer Design

Cloud Servers provide for a flexible and capable DB environment. Let’s explore a few different possible

configurations and cover some pitfalls and important design notes.

	 Master/Slave:
	 It’s not a true HA environment in every sense, since fail-over requires some manual intervention. Still, 	

	 master-slave replication still provides two key advantages:

		 • 	Performance: By executing DB inserts (writes) on the Master and DB selects (reads) to the slave, 	

			 the general DB load is spread and can yield additional performance for busy R/W sites. Another 		

			 benefit is that the data availability is maintained, with a reduced RPO (recovery point objective), 		

			 should the master server suffer a data loss failure.

		 • 	Backups: By performing backups on the slave, your site is not affected during the backup process. 	

			 With a single server and a large database, backups could potentially cause a brief slowdown in your 	

			 sites from mysqldump -induced lag as tables are locked. Instead, you can just take the slave(s) out 	

			 of rotation, run the backups off the slave, then start the slave again for a more seamless backup 	

			 experience.

			 One downfall about Master/Slave is that you usually need to ensure your application is designed to 	

			 split reads and writes. A bit of re-coding may be needed if this isn’t the case.

			 Horizontally scaling your Master/Slave configuration with additional slaves can also be accomplished

			 by randomizing read sources in your application code or by placing an HAProxy instance in front of	

			 the slaves to balance the requests.

DB1 – Master
(writes)

DB2 – Slave
(reads)

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 7
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

http://www.apache.org/
http://tomcat.apache.org/
http://www.lighttpd.net/
http://git-scm.com/
http://en.wikipedia.org/wiki/Rsync
http://en.wikipedia.org/wiki/Cron
http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html

	 Master/Slave with MySQL Proxy:

	 The great benefit behind implementing MySQL Proxy is the ability to incorporate read/write transaction 	

	 splitting of the master/slave solution described above, but without the need to re-write your application. 	

	 However, a single MySQL Proxy instance is also now a single point of failure and does not meet the 		

	 requirements of HA. To solve this, we can deploy a DB structure with a failover MySQL Proxy utilizing 	

	 heartbeat as the second diagram shows below.

	

	 A potential challenge here is the need to leverage a floating IP, much as in the HA LB layer example 		

	 above. However, this IP needs to be private to avoid bandwidth charges and currently the Cloud Servers 	

	 product doesn’t offer private floating IPs. Workarounds can be achieved by creating custom routes and a 	

	 custom subnet for the cloud servers to use.

	

	 tMulti Master Mode:

	 This configuration is something that generally isn’t advisable in a Cloud Server environment due to the 	

	 potential of the DB nodes failing to stay synchronized. When this happens, replication breaks, and 		

	 resolving it can cause application downtime. Consider this solution only if there is a very specific need 	

	 for it and understand all of the risks and implications.

	

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 8
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

DB1 – Master
(writes)

DB2 – Slave
(reads)

mssqlproxy1 mssqlproxy2
Heartbeat

DB3 – Master

DB5 – SlaveDB4 – Slave

DB1 – Master DB2 – Master

	 Master-Master:

	 This configuration is something that generally isn’t advisable in a Cloud Server environment due to the 	

	 potential of the DB nodes failing to stay synchronized. When this happens, replication breaks, and 		

	 resolving it can cause application downtime. Consider this solution only if there is a very specific need 	

	 for it and understand all of the risks and implications.

These are just some of the many database architecture choices that can be made when designing an HA

configuration. High-traffic and database intensive sites will benefit the most from careful choices in this area.

VII. SECURING AN HA ENVIRONMENT

Securing an HA cloud environment shouldn’t be a daunting task. By using standard server hardening best

practices, customers can ensure they have a set of protected machines. Common practices such as closing off

unused ports, running services on alternate ports, disabling root ssh access, keeping your systems patched,

etc., are all just as important on Cloud Servers as they are on Dedicated Servers.

Linux Cloud Servers come with two network interfaces by default: a public (eth0) which connects the Cloud

Server to the outside world and a private (eth1) which runs on a backend network referred to as ServiceNet.

ServiceNet is intended for Cloud Server to Cloud Server communication without any BW fees. Stringent

iptables rules on both of these interfaces should be a primary focus of a security plan. Great documentation

to assist you in configuring iptables for Cloud Servers can be found in our Knowledge Base here.

Another security configuration option to consider is using your Load Balancing instances as Firewalls/

Gateways and disabling any public access (eth0 interfaces) to your web and DB nodes. These “backend”

servers will then communicate with the LBs via the private Rackspace (eth1) ServiceNet network, removing

another possible attack vector from intruders.

Finally, while Cloud Servers can be configured to be nearly every bit as secure as a Dedicated Server, many

regulatory compliance standards haven’t yet been re-written to include cloud technology. Even though Cloud

Servers are easily secured and hardened, customers seeking HIPAA, PCI, and other regulatory compliancy

need to understand that the cloud environments in general do not yet meet these compliance standards.

It can also be said that some of these standards (that forbid multi-tenancy for example) will need to be

updated, and we expect they will be over time, and Rackspace participates in standards committees to such

end. Suffice it to say that you should be highly familiar with all compliance requirements prior to utilizing the

cloud.

Replication

DB1 – Master
(writes)

DB2 – Slave
(reads)

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 9
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

http://cloudservers.rackspacecloud.com/index.php/Introduction_to_iptables

VIII. TESTING AND GOING LIVE

After your configuration is built, testing is the next crucial step in determining if real-world results are in line

with the capacity estimates calculated in the design phase.

Stress testing can be performed either with open source tools such as ApacheBench, JMeter, http_load,

and Sieve, or with advanced services such as SOASTA and LoadStorm. While the free tools can absolutely

yield some helpful comparative test results between your current environment and your cloud environment,

these tools don’t always tell the whole story. When budgets are able, advanced services such as SOASTA and

their team of experts can help simulate geographically dispersed traffic with various test cases and give the

best estimation of what you can expect.

	 Tip: Deploying monitoring and performance logging tools (such as SAR, Munin, and mql-slow-query-	

			 logging) prior to stress testing can be instrumental in helping to show areas in the environment 		

			 which may be candidates for optimization.

A significant portion of your test plan should also include infrastructure functionality testing. Necessary

exercises in due diligence include:

	

	 •	 verifying that your Load Balancers fail-over properly;

	 •	 ensuring web nodes balance requests correctly;

	 •	 and inspecting databases for proper replication functionality.

Finally, creating a documented plan outlined with specific steps for corrective action in the case of a disaster,

and testing this plan prior to launch, should be a top priority.

FINAL THOUGHTS

This technical whitepaper merely skimmed the surface on designing and deploying HA Linux Cloud Server

architectures. It discussed some crucial Rackspace-specific information and hopefully provided a bit of

insight into the tools and methodology to consider when taking on the task of creating HA solutions on

The Rackspace Cloud. Cloud computing offers a monumental shift in increased scalability and substantial

cost-savings over traditional environments. The cloud is ready for enterprise production environments and

organizations who have not yet embraced the technology should consider making it part of their IT strategy

at this time.

ARCHITECTING HIGH AVAILABILITY CLOUD ENVIRONMENTS | Page 10
© 2010 Rackspace US, Inc.
RACKSPACE®HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78212 U.S.A

http://httpd.apache.org/docs/2.0/programs/ab.html
http://jakarta.apache.org/jmeter/
http://www.acme.com/software/http_load/
http://workaround.org/ispmail/lenny/server-side-sieve-filtering
http://tools.rackspacecloud.com/applications/soasta-cloudtest-on-demand/
http://loadstorm.com/
http://www.redhat.com/magazine/011sep05/features/tools/#sar
http://munin-monitoring.org/

